US009256609B2

a2 United States Patent 10) Patent No.: US 9,256,609 B2
Rao et al. (45) Date of Patent: Feb. 9, 2016
(54) FIXED SIZE EXTENTS FOR VARIABLE SIZE 2011/0125722 A1* 5/2011 Rao ..o, GOG6F 17/30156
707/693
DEDUPLICATION SEGMENTS 2011/0270810 Al* 112011 Dinkar GOGF 17/30156
707/692
(75) Inventors: Goutham Rao, Los Altos, CA (US); 2012/0124014 Al* 52012 Provenzano ... GO6F 17/30156
Vinod Jayaraman, San Francisco, CA 707/692
(US) 2013/0018853 Al* 1/2013 Jayaraman GOG6F 3/0641
707/692
R 2013/0080405 Al* 3/2013 Smith GOG6F 17/30159
(73) Assignee: Dell Products L.P., Round Rock, TX i 707/692
us) 2014/0195725 Al* 7/2014 Bennett GOGF 12/0246
711/103
(*) Notice: Subject. to any dlsclalmer,. the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 1008 days. Lillibridge, Mark, et al., “Sparse Indexing: Large Scale, Inline
Deduplication Using Sampling and Locality”, 7 USENIX Confer-
: > i ies, , CA, ,
(21) Appl. No.: 13/415,324 ence on File and Storage Technologies, San Francisco, CA, (2009)
pp. 111-123.
(22) Filed: Mar. 8, 2012 Yang, Tianming, et al., “DEBAR: A Scalable High-Performance
Deduplication Storage System for Backup and Archiving”, Univer-
(65) Prior Publication Data sity of Nebraska-Lincoln, CSE Technical Reports, Paper 58, (2009),
20 pgs.
US 2013/0238570 Al Sep. 12,2013 White Paper, 3Gen Data Systems [retrieved Mar. 8, 2012]. Retrieved
from the Internet: < URL: http://www.3 gendata.com/whitepaper/
(51) Imt.Cl 3Gen_ DataDedup_white_paper new.pdf>, 9 pgs.
GOG6F 17/30 (2006.01)
(52) US.CL * cited by examiner
CPC oo, GOG6F 17/30156 (2013.01)))))
(58) TField of Classification Search Primary Examiner —Noosha Arjomandi
(6 O GOGF 17/30156 (74) Attorney, Agent, or Firm — Kwan & Olynick LLP
USPC et 707/692
See application file for complete search history. &7 ABSTRACT
. Mechanisms are provided for maintaining variable size dedu-
(56) References Cited plication segments using fixed size extents. Variable size seg-

2010/0125553 Al*

U.S. PATENT DOCUMENTS

5/2010 Huang .. GO6F 11/1453

ments are identified and maintained in a datastore suitcase.
Duplicate segments need not be maintained redundantly but

8,510,275 B2* 8/2013 Wilson GO6F 17/30156 can be managed by updating reference counts associated with
707/610 the segments in the datastore suitcase. Segments are main-
8,983,952 B1* 3/2015 Zhangetal. 707/736 tained using fixed size extents. A minor increase in storage

overhead removes the need for inefficient recompaction when

707/661 s . . s
2010/0312750 AL* 122010 Zeis GOGF 11/1464 a segment is removed from the datastore suitcase. Fixed size

707/640 extents can be reallocated for storage of new segments.
2011/0071989 Al* 3/2011 Wilson GO6F 17/30156

707/692 16 Claims, 7 Drawing Sheets

Datastore Suitcase 101

Segment A 103
Reference Count 3

Segment B 105
Reference Count 1

Segment C 107
Reference Count §

Segment D 109
Reference Count 3

U.S. Patent Feb. 9, 2016 Sheet 1 of 7 US 9,256,609 B2

Figure 1

Datastore Suitcase 101

Segment A 103
Reference Count 3

Segment B 105
Reference Count 1

Segment C 107
Reference Count 5

Segment D 109
Reference Count 3

U.S. Patent Feb. 9, 2016 Sheet 2 of 7 US 9,256,609 B2

Figure 2
Datastore Suitcase 201
Segment A 203 221
Reference Count 3
223
225
Segment B 205 227
Reference Count 1
229
231
233
235
237
Segment C 207 239
Reference Count 5
241
Segment D 209 243
Reference Count 3
245
247
249
251

U.S. Patent Feb. 9, 2016 Sheet 3 of 7 US 9,256,609 B2
300
CPU 301 Cache 311
Memory || System Memory
Controller 313 303
\ System Bus 315 ‘
Deduplication Deduplication
Dictionary 307 Accelerator 305
Bus
Bridge
317
Secondary Bus 329 ‘
Bus - ‘
Peripheral | | Peripheral Bridge —{ Peripheral Component Interconnect Bus 319 ‘
331 333 327 | |
Peripheral Peripheral Peripheral
Device 321 Device 323 Device 325

Figure 3

U.S. Patent Feb. 9, 2016 Sheet 4 of 7 US 9,256,609 B2

Figure 4
Dictionary 401
Fingerprint 411 Storage Location 421
a Location 423
b Location 425
c Location 427
Dictionary 451
Fingerprint 461 Storage Location 471
i Location 473
j Location 475
k Location 477

U.S. Patent

Feb. 9, 2016 Sheet 5 of 7

<// Managing Variable -
. SizeSegments -

—
—

i

Receive Data Stream 501

Perform Segment Boundary
Identification And
Fingerprinting 503

/////Is The Segmen?\\\\ No
“-._Already Maintained?

\\ //
505

Yes Determine The Number Of
Fixed Sized Extents Needed
509
y
Locate And Allocate
Available Extents 511

y

Maintain Segment Using
Fixed Size Extents 513

Increment Reference Count
Corresponding To The
Segment 507

US 9,256,609 B2

U.S. Patent Feb. 9, 2016

— T
— .

< Segment Deletion)

~ -
— o

[

Delete Or Modify A File Or
Volume 601

l

Identify Segments
Corresponding To The File
603

Identify Segments In The
Corresponding Datastore
Suitcases 605

A

Decrement Reference
Counts Associated With
The Segments 607

~ .

P N
" Does The Reference Count .

</\ Reach Zero Or Indicate That No
“~F ‘iles Reference The Segmen}l//

Modification Of Datastore
Suitcase Is Complete 609

Sheet 6 of 7

US 9,256,609 B2

Yes

™~
P
//

Delete Scgment From
Datastore Suitcase 611

Individual Extents
Corresponding To Deleted
Segment Can Be Used To

Hold Portions Of New
Segments 613

Figure 6

US 9,256,609 B2

Sheet 7 of 7

Feb. 9, 2016

U.S. Patent

£ 231
6oL 28e101
JUISISIdG
T 1L d0rpIo] SILsng €0L A10We
10L 10Ssa001d

00L Wa1skg

US 9,256,609 B2

1
FIXED SIZE EXTENTS FOR VARIABLE SIZE
DEDUPLICATION SEGMENTS

TECHNICAL FIELD

The present disclosure relates to using fixed size extents for
storage of variable size deduplication segments.

DESCRIPTION OF RELATED ART

Maintaining vast amounts of data is resource intensive not
just in terms of the physical hardware costs but also in terms
of system administration and infrastructure costs. Mecha-
nisms for reducing resource usage include compression and
deduplication. Compression involves encoding bit sequences
using a reduced number of bits. Some file formats themselves
are already compressed, while other file formats can be com-
pressed using a variety of available utilities.

Data deduplication refers to the ability of a system to
eliminate data duplication across files to increase storage,
transmission, and/or processing efficiency. A storage system
which incorporates deduplication technology involves stor-
ing a single instance of a data segment that is common across
multiple files. In some examples, data sent to a storage system
is segmented as a full file, in fixed size segments, or in variable
size segments.

Full file segment deduplication is straightforward, but
entire files must be redundant before resource usage can be
reduced. Fixed size segment deduplication is also relatively
simple. The first segment typically starts at byte zero in a file
and assumes fixed size segments lengths from that origin. If
another file has many common sequences with a file being
deduplicated, but at slightly different offsets, then these com-
mon sequences would not be detected. This is common in files
that may share similar elements, but have slightly different
structures or offsets.

Variable size segment deduplication or sliding window
deduplication provides significant benefits over full file dedu-
plication and fixed size segment deduplication. In a variable
size segment deduplication system, the start and the end of a
segment within a file is variable and can start and end any-
where. The content itself can be used to control where a
segment starts and ends to increase the probability of finding
identical segments elsewhere in the file or in other files. Each
segment is provided with a segment identifier (ID), such as a
digital signature or a hash of the actual data. Once the segment
1D s generated, it can be used to determine if the data segment
already exists in the system. If the data segment already
exists, a reference count can be updated and the data segment
need not be stored again.

However, mechanisms for efficiently handling storage
resources in a variable size segment deduplication system are
limited. Consequently, techniques and mechanisms are pro-
vided to improve variable size segment deduplication by
using fixed size extents.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may best be understood by reference to the
following description taken in conjunction with the accom-
panying drawings, which illustrate particular embodiments of
the present invention.

FIG. 1 illustrates a particular example of a datastore suit-
case.

FIG. 2 illustrates a particular example of a datastore suit-
case using fixed size extents.

10

35

40

45

50

55

60

65

2

FIG. 3 illustrates a particular example of a system that can
use the techniques and mechanisms of the present invention.

FIG. 4 illustrates a particular example of a deduplication
dictionary.

FIG. 5 illustrates a particular example of maintaining vari-
able size segments using fixed size extents.

FIG. 6 illustrates a particular example of variable size
segment deletion.

FIG. 7 illustrates a particular example of a storage system.

DESCRIPTION OF PARTICULAR
EMBODIMENTS

Reference will now be made in detail to some specific
examples of the invention including the best modes contem-
plated by the inventors for carrying out the invention.
Examples of these specific embodiments are illustrated in the
accompanying drawings. While the invention is described in
conjunction with these specific embodiments, it will be
understood that it is not intended to limit the invention to the
described embodiments. On the contrary, it is intended to
cover alternatives, modifications, and equivalents as may be
included within the spirit and scope of the invention as
defined by the appended claims.

For example, the techniques and mechanisms of the
present invention will be described in the context of particular
compute nodes and network interfaces. However, it should be
noted that the techniques and mechanisms of the present
invention apply to a variety of different compute nodes and
network interfaces. In the following description, numerous
specific details are set forth in order to provide a thorough
understanding of the present invention. Particular example
embodiments of the present invention may be implemented
without some or all of these specific details. In other
instances, well known process operations have not been
described in detail in order not to unnecessarily obscure the
present invention.

Various techniques and mechanisms of the present inven-
tion will sometimes be described in singular form for clarity.
However, it should be noted that some embodiments include
multiple iterations of a technique or multiple instantiations of
a mechanism unless noted otherwise. For example, a system
uses a processor in a variety of contexts. However, it will be
appreciated that a system can use multiple processors while
remaining within the scope of the present invention unless
otherwise noted. Furthermore, the techniques and mecha-
nisms of the present invention will sometimes describe a
connection between two entities. It should be noted that a
connection between two entities does not necessarily mean a
direct, unimpeded connection, as a variety of other entities
may reside between the two entities. For example, a processor
may be connected to memory, but it will be appreciated that a
variety of bridges and controllers may reside between the
processor and memory. Consequently, a connection does not
necessarily mean a direct, unimpeded connection unless oth-
erwise noted.

Overview

Mechanisms are provided for maintaining variable size
deduplication segments using fixed size extents. Variable size
segments are identified and maintained in a datastore suit-
case. Duplicate segments need not be maintained redundantly
but can be managed by updating reference counts associated
with the segments in the datastore suitcase. Segments are
maintained using fixed size extents. A minor increase in stor-
age overhead removes the need for inefficient recompaction
when a segment is removed from the datastore suitcase. Fixed
size extents can be reallocated for storage of new segments.

US 9,256,609 B2

3

Example Embodiments

Maintaining, managing, transmitting, and/or processing
large amounts of data can have significant costs. These costs
include not only power and cooling costs but system mainte-
nance, network bandwidth, and hardware costs as well.

Some efforts have been made to reduce the footprint of data
maintained by file servers and reduce the associated network
traffic. A variety of utilities compress files on an individual
basis prior to writing data to file servers. Compression algo-
rithms are well developed and widely available. Some com-
pression algorithms target specific types of data or specific
types of files. Compression algorithms operate in a variety of
manners, but many compression algorithms analyze data to
determine source sequences in data that can be encoded using
shorter code words. In many implementations, the most fre-
quent source sequences or the most frequent long source
sequences are replaced with the shortest possible code words.

Data deduplication reduces storage footprints by reducing
the amount of redundant data. Deduplication may involve
identifying full file, fixed size, or variable size segments.
According to various embodiments, each segment of data is
processed using a hash algorithm such as MD5 or SHA-1.
This process generates a unique ID, hash, or reference for
each segment. That is, if only a few bytes of a document or
presentation are changed, only changed portions are saved. In
some instances, a deduplication system searches for match-
ing sequences using a sliding window and uses references to
identify matching sequences instead of storing the matching
sequences again.

In a data deduplication system, the backup server working
in conjunction with a backup agent identifies candidate files
for backup, creates a backup stream and sends the data to the
deduplication system. A typical target system in a deduplica-
tion system will deduplicate data as data segments are
received. A block that has a duplicate already stored on the
deduplication system will not need to be stored again. How-
ever, other information such as references and reference
counts may need to be updated. Some implementations allow
the candidate data to be directly moved to the deduplication
system without using backup software by exposing a NAS
drive that a user can manipulate to backup and archive files.

In deduplication systems, storage resource management
including garbage collection is an important aspect affecting
system performance. In systems where full file deduplication
or fixed size segment deduplication are used, storage resource
management is straightforward. In the case of full file dedu-
plication, duplicate files may be mapped to the same file
system index node (inode). When the duplicate files are
deleted, all corresponding data structures can be deleted with-
out taxing the underlying file system.

In the case of fixed size segment deduplication, the seg-
ments that the inodes of the two files point to can be shared.
Reference counts can be managed to determine how many
files are sharing that segment. When the reference count goes
to zero or to a value indicating that the segment is no longer
being used by any file, the segment can be freed. The freed
segments can be overwritten with new fixed size segments in
a relatively efficient manner.

However, when dealing with variable sized streams,
reclaiming unused storage space becomes difficult. Accord-
ing to various embodiments, multiple variable size segments
are maintained in a datastore suitcase. A data structure such as
a file used to maintain multiple variable size deduplication
segments associated with reference counts is referred to
herein as a datastore suitcase. When duplicate segments are
added or removed from a deduplication system, reference
counts are modified to account for the change in the number

10

15

20

25

30

35

40

45

50

55

60

65

4

of files using particular variable size segments. In particular
embodiments, it is recognized that inefficiencies arise when a
reference number reaches a value such as 0 indicating that no
files are using that segment and the segment needs to be
removed. In many systems, it is difficult to reclaim the space
occupied by that segment, since this segment resides within a
datastore suitcase. The space occupied by that segment can-
not easily be returned directly to the file system.

According to various embodiments, recompaction is typi-
cally used to reclaim the unused storage space. Recompaction
involves reading the variable size segments and rewriting the
segments which involves significant file system overhead.
Recompaction can be time consuming and taxing on storage
infrastructure.

Consequently, various techniques of the present invention
use fixed size extents within each data store suitcase to pro-
vide the benefits of variable size segments along with the
storage reuse efficiency of fixed size segments. Each fixed
size extent may be as predetermined value such as 4 kB, 8 kB,
16 kB, etc. A fixed sequence of storage space is referred to
herein as a fixed size extent. Variable size deduplication seg-
ments would occupy a particular number of fixed size extents.
For example, an 11 kB variable size segment would consume
three 4 kB extents or two 8 kB extents. Using fixed size
extents within a file is generally highly inefficient for non-
deduplication file systems due to the amount of wasted space
in the extents. However, it is recognized that in a deduplica-
tion file system, the amount of wasted space is modest relative
to the benefits obtained when storage has to be reclaimed in a
garbage collection process.

According to various embodiments, reference counts are
still maintained for entire segments, not individual fixed size
extents, but usable space is tracked in terms of the number of
available extents across datastore suitcases in a file system. In
particular embodiments, if each extent is 4 kB and the average
segment size is around 64 kB, each segment could have 6%
storage waste. However, assuming a modest deduplication
ratio such as 10:1, the wasted space would only be 0.6% per
file.

In particular embodiments, in a fixed size extent system,
when a reference count for a segment is zero, all extents
occupied by that segment can immediately be queued for
reuse by any new incoming data. No recompaction is neces-
sary. According to various embodiments, segments also need
not occupy consecutive extents. A segment can use as many
extents as needed from one or more datastore suitcases.

FIG. 1 illustrates one example of a variable size segment
datastore suitcase. According to various embodiments, a
datastore suitcase 101 maintains multiple deduplication seg-
ments. After a segment has been delineated, it is determined
if the segment is already in a datastore suitcase. If it is not, the
segment is added to a deduplication dictionary and stored in
available space in a datastore suitcase such as datastore suit-
case 101. File maps or object maps may be maintained to
indicate where segments in particular files are maintained.

According to various embodiments, datastore suitcase 101
maintains segment A 103, segment B 105, segment C 107,
and segment D 109. Segment A 103, segment B 105, segment
C 107, and segment D 109 are referenced by files 3 times, 1
time, 5 times, and 3 times respectively. Reference counts are
adjusted as duplicate segments are added to or removed from
a deduplication system.

According to various embodiments, if the only file refer-
encing segment B 105 is deleted or altered in a way that
segment B 105 is no longer needed, the reference count is
decremented to 0 and segment B 105 can be deleted. How-
ever, since segment B 105 is only a part of a larger datastore

US 9,256,609 B2

5

suitcase 101, segment B 105 cannot easily be removed. In
typical instances, datastore suitcase 101 has to be recom-
pacted. For example, segments are read and rewritten so that
the space previously used by segment B 105 can now be used
by segment C 107 or segment D 109. However, recompaction
is resource intensive and taxes the underlying file system.
Recompaction often consumes a significant portion of pro-
cessing resources in a deduplication system.

Consequently, various techniques are provided to reduce or
eliminate the need for recompaction in a variable size seg-
ment deduplication system. Space previously used by now
deleted variable size segments can be reused for new variable
size segments.

FIG. 2 illustrates one example of a variable size segment
datastore suitcase using fixed size extents. According to vari-
ous embodiments, datastore suitcase 201 is delineated into
fixed size extents including extents 221, 223, 225, 227, 229,
231,233, 235,237,239, 241, 243, 245, 247, 249, and 251. In
particular embodiments, extents are 4 kB or 8 kB in size.
According to various embodiments, segments are divided for
placement into the necessary number of extents. For example,
segment A 203 having reference count 3 is maintained in
extents 221, 223, and 225. Segment B 205 with reference
count 1 is maintained in extents 227, 229, 231, 233, 235 and
237. Segment C 207 with reference count 5 is maintained in
extents 239 and 241. Segment D 209 with reference count 3 is
maintained in extents 243, 245, 247, and 249. Extent 251 is
unused. It should be noted that segments need not be main-
tained in contiguous extents or even the same datastore suit-
case.

According to various embodiments, if the reference count
for segment B 205 is decremented, segment B 205 can be
deleted and extents 227, 229, 231, 233, 235, and 237 can be
reclaimed for storage of new segments. The freed extents 227,
229, 231, 233, 235, and 237 can be used to store one or more
new segments or portions of one or more new segments.
Although some storage space is wasted, in segments such as
segments 225 and 249, having fixed size segments allows
storage space to be reclaimed efficiently without requiring
recompaction.

According to various embodiments, data is scanned to
calculate appropriate segment boundaries. An algorithm such
as Rabin may be used to determine appropriate boundary
locations. Data is also scanned to determine segment finger-
prints. The fingerprints may serve as identifiers for the seg-
ments in a deduplication dictionary. Metadata may be delin-
eated for efficient access after deduplication. In particular
embodiments, deduplication dictionaries and datastore suit-
cases may be generated, updated, and maintained in a distrib-
uted manner. Deduplication may be supplemented with com-
pression and can be performed in-line or post-process.

FIG. 3 illustrates a particular example of a system that can
use the techniques and mechanisms of the present invention.
According to various embodiments, data is received at an
accelerated deduplication system 300 over an interface such
as a network interface. A data stream may be received in
segments or blocks and maintained in system memory 303.
According to various embodiments, a processor or CPU 301
maintains a state machine but offloads boundary detection
and fingerprinting to a deduplication engine or deduplication
accelerator 305. The CPU 301 is associated with cache 311
and memory controller 313. According to various embodi-
ments, cache 311 and memory controller 313 may be inte-
grated onto the CPU 301.

In particular embodiments, the deduplication engine or
deduplication accelerator 305 is connected to the CPU 301
over a system bus 315 and detects boundaries using an algo-

10

15

20

25

30

35

40

45

50

55

60

65

6

rithm such as Rabin to delineate segments of data in system
memory 303 and generates fingerprints using algorithms such
as hashing algorithms like SHA-1 or MD-5. The deduplica-
tion engine 305 accesses the deduplication dictionary 307 to
determine if a fingerprint is already included in the dedupli-
cation dictionary 307. According to various embodiments,
the deduplication dictionary 307 is maintained in persistent
storage and maps segment fingerprints to segment storage
locations. In particular embodiments, segment storage loca-
tions are maintained in fixed size extents. Datastore suitcases,
references, metadata, etc., may be created or modified based
on the result of the dictionary lookup.

Ifthe data needs to be transferred to persistent storage, the
optimization software stack will communicate to the CPU
301 the final destination direct memory access (DMA)
addresses for the data. The DMA addresses can then be used
to transfer the data through one or more bus bridges 317
and/or 327 and secondary buses 319 and/or 329. In example
of a secondary bus is a peripheral component interconnect
(PCI) bus 319. Peripherals 321, 323, 325, 331, and 333 may
be peripheral components and/or peripheral interfaces such
as disk arrays, network interfaces, serial interfaces, timers,
tape devices, etc.

FIG. 4 illustrates multiple dictionaries assigned to different
fingerprints. According to various embodiments, the finger-
print values are checksums or SHA/SHA1/SHA-256 hash
values. In particular embodiments, dictionary 401 is a dedu-
plication dictionary used by a first node and includes finger-
print ranges from 0x0000 0000 0000 0000-0x0000 0000
FFFF FFFE. Dictionary 451 is used by a second node and
includes fingerprint ranges from 0x0000 0001 0000 0000-
0X0000 0001 FFFF FFFF. Fingerprints 411 within the range
for dictionary 401 are represented by symbols a, b, and ¢ for
simplicity. Fingerprints 461 within the range for dictionary
451 are represented by symbols i, j, and k for simplicity.
According to various embodiments, each fingerprint in dic-
tionary 401 is mapped to a particular storage location 421
such as location 423, 425, or 427. Each fingerprint in dictio-
nary 451 is mapped to a particular storage location 471 such
as location 473, 475, and 477.

Having numerous small segments increases the likelihood
that duplicates will be found. However, having numerous
small segments decreases the efficiency of using the dictio-
nary itself as well as the efficiency of using associated object
maps and datastore suitcases.

FIG. 5 illustrates a particular example of a technique for
managing variable size segments maintained in a datastore
suitcase with fixed size extents. According to various embodi-
ments, a data stream is received at 501. The data stream may
be a file, volume, or data block received in-line or post-
process. That is, the data stream may be received while it is
being transmitted for storage or may be received after data has
already been stored. At 503, segment boundary identification
and segment fingerprinting is performed to generate multiple
variable size segments. In particular embodiments, bound-
aries are identified to increase the likelihood that duplicate
segments will be detected. According to various embodi-
ments, a deduplication dictionary is accessed at 505 to deter-
mine whether a particular segment is already maintained in a
datastore suitcase and where the particular segment is
located.

If the segment is already maintained, a reference count
corresponding to the segment is incremented at 507. If the
segment is not already stored, the number of fixed sized
extents needed to maintain the segment is determined at 509.
In particular embodiments, the size of a particular segment is
greater than the size of an extent, and multiple extents are

US 9,256,609 B2

7

typically needed to maintain a single segment. Furthermore,
because fixed size extents are being used, there may be left
over space remaining in an extent. Consequently, the size of
the fixed extents used to maintain the segment is typically
greater than the size of the segment. However, techniques of
the present invention recognize that this slight storage ineffi-
ciency is worth the benefits obtained through removing the
need for recompaction.

Available extents are then located and allocated at 511. The
segment is then maintained using the fixed size extents at 513.
The fixed size extents may be contiguous, but may also be
non-continguous or even maintained in different datastore
suitcases. Extent locations may be maintained in file maps or
object maps or as part of a datastore suitcase itself.

FIG. 6 illustrates one example of segment deletion.
According to various embodiments, a file or volume is deleted
or otherwise modified at 601. At 603, segments correspond-
ing to the file are identified. In particular embodiments, the
segments may be identified using a file map or object map that
identifies files and corresponding segment locations. At 605,
the segments in the corresponding datastore suitcases are
identified. At 607, reference counts associated with the seg-
ments are decremented. If the reference count does not reach
zero or a value indicating that no files referencing the seg-
ment, datastore suitcase modification is complete at 609. If
the reference count reaches zero or a value indicating that no
files are referencing the segment, the segment is deleted from
the datastore suitcase at 611. Individual extents correspond-
ing to the now deleted segment can be used to hold portions of
new segments at 613 without requiring recompaction.

A variety of devices and applications can implement par-
ticular examples of the present invention. FIG. 7 illustrates
one example of a system that can be used as a storage node in
a deduplication system. According to particular example
embodiments, a system 700 suitable for implementing par-
ticular embodiments of the present invention includes a pro-
cessor 701, a memory 703, an interface 711, persistent stor-
age 705, and a bus 715 (e.g., a PCI bus). When acting under
the control of appropriate software or firmware, the processor
701 is responsible for such tasks such as optimization. Vari-
ous specially configured devices can also be used in place of
aprocessor 701 or in addition to processor 701. The complete
implementation can also be done in custom hardware. The
interface 711 is typically configured to send and receive data
packets or data segments over a network. Particular examples
of interfaces the device supports include Ethernet interfaces,
frame relay interfaces, cable interfaces, DSL interfaces, token
ring interfaces, and the like. Persistent storage 705 may
include disks, disk arrays, tape devices, solid state storage,
etc.

In addition, various very high-speed interfaces may be
provided such as fast Ethernet interfaces, Gigabit Ethernet
interfaces, ATM interfaces, HSSI interfaces, POS interfaces,
FDDI interfaces and the like. Generally, these interfaces may
include ports appropriate for communication with the appro-
priate media. In some cases, they may also include an inde-
pendent processor and, in some instances, volatile RAM. The
independent processors may control such communications
intensive tasks as packet switching, media control and man-
agement.

According to particular example embodiments, the system
700 uses memory 703 to store data and program instructions
and maintain a local side cache. The program instructions
may control the operation of an operating system and/or one
or more applications, for example. The memory or memories
may also be configured to store received metadata and batch
requested metadata.

20

25

30

40

45

50

60

8

Because such information and program instructions may
be employed to implement the systems/methods described
herein, the present invention relates to tangible, machine
readable media that include program instructions, state infor-
mation, etc. for performing various operations described
herein. Examples of machine-readable media include hard
disks, floppy disks, magnetic tape, optical media such as
CD-ROM disks and DVDs; magneto-optical media such as
optical disks, and hardware devices that are specially config-
ured to store and perform program instructions, such as read-
only memory devices (ROM) and programmable read-only
memory devices (PROMs). Examples of program instruc-
tions include both machine code, such as produced by a
compiler, and files containing higher level code that may be
executed by the computer using an interpreter.

Although many of the components and processes are
described above in the singular for convenience, it will be
appreciated by one of skill in the art that multiple components
and repeated processes can also be used to practice the tech-
niques of the present invention.

While the invention has been particularly shown and
described with reference to specific embodiments thereof; it
will be understood by those skilled in the art that changes in
the form and details of the disclosed embodiments may be
made without departing from the spirit or scope of the inven-
tion. It is therefore intended that the invention be interpreted
to include all variations and equivalents that fall within the
true spirit and scope of the present invention.

What is claimed is:

1. A method comprising:

receiving a data stream at an interface;

performing segment boundary identification and segment

fingerprinting to generate a plurality of variable size
segments including a first segment;

accessing a deduplication dictionary to determine whether

the first segment is maintained in one or more datastore
suitcases;

determining a first number of fixed sized extents associated

with the one or more datastore suitcases needed to main-
tain the first segment;

maintaining the first segment in a plurality of contiguous

fixed size extents in a single datastore suitcase,

wherein after the first segment is deleted, the plurality of
contiguous fixed size extents in the datastore suitcase
used to maintain the now deleted first segment are
used to maintain portions of a plurality of new seg-
ments without having to perform recompaction.

2. The method of claim 1, wherein the plurality of variable
size segments includes a second segment having a second
segment size different from a first segment size.

3. The method of claim 1, wherein a first reference count is
associated with the first segment.

4. The method of claim 3, wherein the first segment is
deleted when the first reference count indicates that the seg-
ment is no longer mapped to any file.

5. The method of claim 1, wherein the first segment is
maintained in a plurality of non-contiguous fixed size extents
in one or more datastore suitcases.

6. The method of claim 5, wherein after the first segment is
deleted, the plurality of non-contiguous fixed size extents in
the one or more datastore suitcases used to maintain the now
deleted first segment are used to maintain portions of a plu-
rality of new segments without having to perform recompac-
tion.

7. The method of claim 1, wherein the deduplication dic-
tionary is accessed using a first fingerprint corresponding to
the first segment.

US 9,256,609 B2

9

8. A system comprising:

an interface operable to receive a data stream;

a processor operable to perform segment boundary identi-
fication and segment fingerprinting to generate a plural-
ity of variable size segments including a first segment
and access a deduplication dictionary to determine
whether the first segment is maintained in one or more
datastore suitcases;

wherein a first number of fixed sized extents associated
with the one or more datastore suitcases needed to main-
tain the first segment is determined;

wherein the processor is further operable to maintain the
first segment in a plurality of contiguous fixed size
extents in a single datastore suitcase,
wherein after the first segment is deleted, the plurality of

contiguous fixed size extents in the datastore suitcase
used to maintain the now deleted first segment are
used to maintain portions of a plurality of new seg-
ments without having to perform recompaction.

9. The system of claim 8, wherein the plurality of variable
size segments includes a second segment having a second
segment size different from a first segment size.

10. The system of claim 8, wherein a first reference count
is associated with the first segment.

11. The system of claim 10, wherein the first segment is
deleted when the first reference count indicates that the seg-
ment is no longer mapped to any file.

12. The system of claim 8, wherein the first segment is
maintained in a plurality of non-contiguous fixed size extents
in one or more datastore suitcases.

13. The system of claim 12, wherein after the first segment
is deleted, the plurality of non-contiguous fixed size extents in

25

30

10

the one or more datastore suitcases used to maintain the now
deleted first segment are used to maintain portions of a plu-
rality of new segments without having to perform recompac-
tion.
14. The system of claim 8, wherein the deduplication dic-
tionary is accessed using a first fingerprint corresponding to
the first segment.
15. A non-transitory computer readable storage
medium comprising:
computer code for receiving a data stream at an interface;
computer code for performing segment boundary identifi-
cation and segment fingerprinting to generate a plurality
of variable size segments including a first segment;

computer code for accessing a deduplication dictionary to
determine whether the first segment is maintained in one
or more datastore suitcases;

computer code for determining a first number of fixed sized

extents associated with the one or more datastore suit-
cases needed to maintain the first segment;

computer code for maintaining the first segment in a plu-

rality of contiguous fixed size extents in a single datas-

tore suitcase,

wherein after the first segment is deleted, the plurality of
contiguous fixed size extents in the datastore suitcase
used to maintain the now deleted first segment are
used to maintain portions of a plurality of new seg-
ments without having to perform recompaction.

16. The computer readable medium of claim 15, wherein
the plurality of variable size segments includes a second
segment having a second segment size different from a first
segment size.

